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Abstract. The stationary electromagnetic field produced by a rapidly rotating, magnetised 
and conducting sphere is discussed. The field is determined by solving Maxwell’s equations 
for an accelerating medium and reduces in the non-relativistic limit to the expected unipolar 
induction field of a slowly rotating spherical magnet. 

1. Introduction 

The classical electrodynamics of continuous media provides a successful description 
of many phenomena involving matter and electromagnetism. If the motions of the 
media are prescribed along with appropriate constitutive relations and boundary 
conditions then Maxwell’s equations provide a closed system for many problems of 
interest. Among some of the earliest applications [ l ,  2 and further references therein] 
one may include the problem of determining the electromagnetic field of a rotating 
spherical conductor with permanent magnetisation. Such a system underlies the 
modelling of a wide variety of diverse phenomena ranging from the Earth’s geo- 
magnetism [3] to the description of pulsar dynamics [4]. It may also be of relevance 
for the description of extended relativistic [ 51 models of certain elementary particles. 
It is somewhat surprising to discover that this problem has generated considerable 
debate [6] in the not-too-distant scientific literature. The reason for this appears 
twofold. Firstly, early investigators were often imprecise in posing the problem and 
fixing the frame of reference for their subsequent solutions. Secondly, there seemed 
to be a reluctance to use the covariant formulation of Maxwell’s equations. Thus one 
finds certain authors excusing themselves for using ‘Minkowski’s electrodynamics of 
moving media’ (which establish the relation between electromagnetic fields measured 
in different inertial frames) in a problem dealing with fields in a non-inertial frame. 
The reasons given were that such an approximation neglected effects that were deemed 
irrelevant in the context under discussion. However, to our knowledge such effects 
have never been sought or discussed in the context of the unipolar induction of a 
rapidly rotating spherical magnet. 

Our aim in resurrecting this classical problem is to demonstrate that its covariant 
spacetime formulation rectifies and clarifies a number of conceptual errors that plagued 
the early treatments. 

We recognise that the electromagnetic fields for this problem must depend on the 
nature of the choice of magnetisation tensor in the sphere. Such a tensor could in 
general depend on the acceleration of the spinning sphere and in any case will depend 
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on the physics of extended matter as the spin rate becomes relativistic. Furthermore 
the type of magnetisation adopted, the induced currents in the medium and the interior 
and exterior fields must all be consistent with the covariant Maxwell equations. In 
the absence of any persuasive properties for a relativistic magnetisation in an accelerat- 
ing medium we approach this problem by specifying the types of current permitted in 
the rotating sphere and seeking the simplest magnetisation consistent with these that 
reduces in the static limit to a uniform magnetisation. In order to make contact with 
earlier work we suppose that the sphere sustains a convective 4-current proportional 
to the 4-velocity of each rotating element together with a possible ohmic current 
proportional to the local electric field in the corotating frame of the medium. Such a 
minimal assumption enables us to find a simple self-consistent magnetisation field with 
the required limiting properties. We then seek stationary fields that render the ohmic 
currents zero. It is customary to describe such a solution as appropriate to an infinitely 
conducting medium although we prefer to regard it as the stationary limit of a solution 
involving a finite conductivity. Thus no recourse is made to inertial Lorentz transforma- 
tions; one simply solves Maxwell's equations with well posed boundary conditions in 
the context of a (flat) spacetime description of a rotating magnetised sphere. We 
present an exact solution that reduces to the expected field configuration in the low 
rotation speed limit but fully accommodates the effects of relativistic speeds of rotation. 

Although we are not concerned here with pursuing this simple model into astro- 
physical domains one might regard it as a relativistic version of the Julian-Goldreich 
[7] symmetric pulsar model. It would be of interest to generalise our techniques to a 
non-axially symmetric configuration containing a magnetosphere in order to see if 
our relativistic generalisation could have non-trivial implications in a more realistic 
situation. 

2. Covariant formulation 

We seek the fields generated by a rotating magnetised sphere. Let g denote the metric 
tensor field on spacetime which we shall take to be Minkowskian. A non-vanishing 
future-pointing timelike vector field U on a region of spacetime can be normalised so 
that: 

g(v, v )  = -1 
and it may be associated with an observer frame. Then if F is the closed Maxwell 
2-form (dF=O)  it admits an orthogonal decomposition with respect to any observer 
field v according to: 

F = e A v" + C * ( 6  A v") (2.2) 

i,e = 0 (2.3) 
i,b = 0 (2.4) 

where the 1-forms e and b satisfy 

and are defined as the electric and magnetic induction 1-forms with respect to such 
an observer field. i, here denotes the interior or contraction operator on forms [8] 
and c2 = I / E ~ ~ , ,  in terms of the permittivity and permeability po of the vacuum. 
The tilde over a form associates it with the corresponding vector field. Thus given U, 
v" is defined by 
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for all vector fields X. The classical electric and magnetic induction vector fields 
correspond to h and 6 The (linear) map * is the Hodge map defined with respect to 
g, taking forms to their Hodge dual. Given F and U, it follows that 

e = i,F (2.6) 

b = - i , *  F. (2.7) 

In a polarisable medium with permanent magnetisation it is customary to incorporate 
certain source of F into a 2-form G. Then if j denotes the remaining current 1-form 
the remaining Maxwell equation becomes 

SG=j (2.8) 

where S = *-Id*. The displacement 1-form d and the magnetic 1-form h, determined 
by v follow from: 

1 
G = d A 5-k- * ( h  A 6) (2.9) 

with i,d = i,h = 0. Similarly the scalar volume charge density p( , )  and 3-current 2-form 
J(,, determined by v are given by: 

c 

j = -p (v )5+* (J ( , )  A 6). (2.10) 

G =  &,F+II. (2.11) 

We call the difference between G and the polarisation 2-form II according to: 

A polarisable medium I will be modelled on a 4-chain on spacetime on which is defined 
a timelike vector field U describing its state of motion. For our purpose we may suppose 
that U has been normalised ( g (  U ,  U )  = -1). Then the polarisation 1-formp and magneti- 
sation 1-form m are defined with respect to U by: 

1 
n=p  A U ' - - *  (m A U') (2.12) 

C 

with i,p = i,m = 0. If the medium contains proper charge density p( , )  then j will contain 
the (convective) current 1-form p(,,U'. The medium is (isotropically) electrically con- 
ducting if the 4-chain with support on region I of spacetime has a scalar U, > 0 (the 
conductivity) associated with it such that j contains as a contribution the ohmic current 

j ,  = -u,i,F. (2.13) 

A medium having an interface with (say) the vacuum will be modelled by a four- 
dimensional region with a timelike 3-chain giving the history of the interface as the 
hypersurface 

f = O  (2.14) 

in terms of some smooth function f on spacetime. Hence @ will be spacelike. We 
shall assume that for region I, f <  0 while f > 0 will be denoted as a vacuum region 11. 

Thus a simple medium is characterised by the function f that defines the domain 
f <  0 of a vector field U ,  together with the 1-forms ( p ,  m) and the scalar U, on spacetime. 
Given5 U and U, we seek solutions to Maxwell's equations 

d F '  = 0 (2.15) 

(2.16) 6G' = -p(u,U' - u,i,F I 
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that can be matche.d consistently to vacuum solutions of the equations: 

dF"  = 0 (2.17) 

6G" = 0 (2.18) 

where G" = .sOFT1. 

3. Invariant boundary conditions 

Since f = O  defines a discontinuous interface between two media we must deal with 
discontinuous 2-forms on spacetime and admit a distributional current 1-form having 
support on the 3-chain defined b y f =  0. If 6, denotes a hypersurface-Dirac distribution 
then such a current may be written js6, where j ,  is regular on f = O .  Denoting the 
discontinuity of any form as [F] = (FI- F") evaluated a t f =  0, it follows from (2.15)- 
(2.18) that 

[ F] A dflf=, = 0 

[*GI A dfl,=, = * j A .  

i g [  GI = -j, . 

(3.1) 

(3.2) 

(3.3) 

Since [*GI A df= -*i;;i[G], equation (3.2) may alternatively be written as 

To reformulate the above equation in terms of electric and magnetic fields one must 
choose (in addition to the vector field U defining the motion of the medium) an observer 
field Y with which to refer the 1-forms e, b, d and h. (There is no reason why the 
frames so chosen for region I and I1 should coincide.) Contrary to assertions that are 
sometimes found in the literature, the (four-dimensional) Maxwell's equations are 
perfectly capable of describing accelerating matter and can accommodate fields defined 
with respect to accelerating observers. For some problems a comoving field description 
with Y = U may be appropriate but if dv' # 0 then projection of F into comoving fields 
will entail 'non-inertial' terms simulating current sources in the (3 + 1)-form of Max- 
well's equations. In the following we shall work with an inertial Y (dv=O) which 
defines what we shall call a laboratory frame. 

We suppose our sphere to have no proper polarisation and take p = 0. Since it is 
not our concern to worry about elastic properties of the medium we shall also suppose 
our sphere to be an idealised 'rigid' rotator with a constant angular speed w about a 
fixed spatial axis in the laboratory frame. Furthermore we demand that when w = O  
the sphere possess a constant uniform magnetisation directed along the axis of rotation. 
In this configuration we naturally demand the sphere to be electrically neutral and 
that the only magnetic fields in this frame are those produced by the magnetisation. 
Thus the sphere contains no surface and volume charge density when w = 0. The 
imposition of these conditions on our problem together with the regularity conditions 
on the fields at spatial infinity are necessary to pin down the solution of the rotating 
sphere. In particular our solution is determined by our choice of admissible currents 
( j ,  d * U)' and the condition that the solution reduces in the w = 0 limit to the inertial 
field configuration described above. Furthermore our solution implies the existence 
of free charge in the interior of the sphere having a non-zero net flux (of *GI) over 
its surface. However, this will be exactly balanced by an integrated surface charge 
induced by the discontinuity of * G  across the hypersurface f =  0. The latter depends 
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on the structure of magnetisation form Il as well as the condition that the surface 
3-currents vanish as w tends to zero. 

We impose two spacetime symmetries on our solution. We are interested in axially 
symmetric, stationary, inertial-frame field configurations. Since the presence of a finite 
conductivity provides a natural relaxation timescale (E,,/ on) for time-dependent sol- 
utions, the stationary solutions are expected only in the infinite conductivity limit or 
in the asymptotic time limit of a transient solution with finite un. Thus we seek a 
stationary inertial field satisfying 

i,F‘ = 0. (3.4) 

2xrI=O (3 .5)  

ZxF = 0 (3.6) 

If X generates a spacetime symmetry axis we also require that 

where Tx denotes the Lie derivative with respect to X .  

4. Interior fields 

Let ( t ,  x, y,  z) be standard inertial coordinates for Minkowskian spacetime for which 

(4.1) 
We adopt units in which c = 1 henceforth and suppose x = y = z = 0 locates the world 
line of the centre of the sphere. In standard spherical polar coordinates (t,  r, e, 4)  

g = -dr O d t  + dx O d x  + dy O d y  + dz Odz. 

g=-d tOdt+drOdr+r’dOOd8+r2s in2  Bd4Odq5 (4.2) 

and we suppose the sphere rotates about the z axis where z = r cos 8. We define the 
inertial electric and magnetic fields with respect to U = d / d t  with v’= -dt. In terms of 
the polar chart the interior of the sphere is defined by f < 0 where 

f = r - a  (4.3) 
for some constant a (the radius of the sphere). The ‘rigid’ rotation corresponds to the 
vector field 

U = y(a,  + wd,) 

y 2 (  r, e )  = (1 - w2r2 sin2 e)-’ 
where 

(4.4) 

(4.5) 
and the constant o is such that: 

w 2  < l/(r’ sin’ e )  for O S  r S  a, O S  O S  T. 

The integral curves of U may be identified with the world lines of the elements composing 
the rotating medium. Since a / &  is in the direction of the axis of rotation we endow 
the sphere with a magnetisation described by the 2-form 

Il= - * ( m  A ti) (4.6) 
where m is a spacelike l-form on spacetime with the properties 

T+,m = 0 

i,m = 0. 
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As U" = y( -dt + wr2 sin2 8 d 4 )  we accommodate our symmetry requirements by looking 
for solutions in which the magnetisation is proportional to ma dz for a specified constant 
m,. Thus our fields will be parametrised by the radius of the sphere a, the angular 
speed w and the magnetisation strength ma. 

In terms of an orthonormal coframe basis eo = dt, e' = dr, e2 = r de, e3 = r sin e d4,  
the equations (3.4), (2.15) and (2.16) are satisfied by 

F ' = y b , * ( d z ~ U ' )  

or 

F' = -y2bo(wr sin2 Beo A e' + wr sin 8 cos 8e0 A e'+ cos Be2 A e3 + sin Be' A e3)  (4.9) 

(4.10) 

The modulation of the 2-form * (dz A U " )  by the particular function y of r sin 0 

6F'  = 2y3wboU' (4.11) 

GI= E,F'- ym, * (dz A U ' )  

for some constant bo to be determined. 

follows from the requirement that 6G' be proportional to U': 

and 

6(mo * (dz A y;)) = 2y3wmoU' 

6G' = 2 Y ~ W ( E ~ ~ , -  mo)U" 

= P ( U ) U .  

Thus there appears a comoving volume charge density 

(4.12) 

(4.13) 

~ ( ~ 1  = 2 y 3 ~ ( ~ o b O - ~ 0 )  (4.14) 

in the sphere. The value of the charge density in the inertial frame is then given by 

(4.15) 

This is accompanied by an azimuthal inertial 3-current density 2-form 

&,, = ~ ( ~ , ) w r ' s i n  8 d r  A de. (4.16) 

From (4.11) and (4.14) we may compute the total free (volume) charge inside the 
sphere by 

1 
( sobo - ma) ( - w a  + ~ sin-' ma 41 - w 2 a 2  

To fix bo we must next compute the vacuum fields outside the sphere. 

5. Exterior fields 

(4.17) 

We now look for a stationary vacuum Maxwell field in the region I1 satisfying 2oF" = 0, 
where U = a / a t  in our inertial chart, for the region 11. In terms of 1-forms el1 and b" 
with i,e" = i,b" = 0 we may write 

F" = e" A v" + * (b" A 6) (5.1) 
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The l-forms e'' and b" must obey 

de" = 0 

d ;  e"=O 

db" = 0 

d ;  b"=O 

where the three-dimensional Hodge dual ; is defined by 
A 

* l=dA * 1. 

Hence we have 
e r r  = 

b" = -d@E 

for time-independent harmonic O-forms @ F and @:. Adopting the symmetry conditions 

23,J*@; = 2J,a#,@; = 0 (5 .9 )  

we have for r a a ,  Ostlsr, 0 ~ 4 < 2 7 ~  

(5.10) 

(5.11) 

in terms of the Legendre polynomials 4. Exclusion of j = 0 in (5.10) incorporates our 
charge-neutrality condition for the magnetised sphere. F" can now be computed in 
terms of the numbers {a,} and {p,}, and compared with F' at f = 0. The condition 

(5.12) [ F ]  A dr/,=, = 0 

then fixes the coefficients to be 

2 j + 1  . 
a, = - a-'+' (5.13) 

2 

where 

(5.14) 

(5.15) 

and 

bi = bo COS By2(a, e) 
= COS e. (5.16) 

It follows from (5.13) and (5.14) that a, = 0 for j odd and pi = 0 for j even. 
Thus the exterior solution is specified in terms of the constants bo, w and a, as a 

multiple series starting with an electric quadrupole and a magnetic dipole field in the 
inertial frame. 
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6. Surface current 

We finally compute the surface current and fix the constant bo by imposing the condition 
that when w = 0, the surface of the sphere in the inertial frame carries no surface 
3-current. We impose (3.3) with 

G" = 

From (4.10) and (6.1) 

[GI = eOIF] - ymo * (dz A 2) (6.2) 
and we compute 

id,F' = y2  bo( o r  sin2 Be0 - sin Be3) 

iJym,* ( d z ~ C ) ) = ( y ~ m , w r s i n ~  0)e2-(y2m0sin 0)e3. (6.5) 
Hence from (3.3) and (6.2) the discontinuity current 1-form is 

j ,  = (2) + y 2 0 r  sin2 e(  Eobo - m,) 

We now define a surface charge density 2-form I;, and a surface current density 1-form 
K, by 

* j h = X , A  df+K, A df A v' (6.7) 
where .v = d / d t ,  i,X, = 0, ivK, = 0 and f r - a characterises the surface of the sphere. 
Then we read off the inertial surface charge density 2-form I;, and inertial surface 
current density 1-form K, by comparing (6.6) and (6.7): 

Xu = { E, (5) - (mo- Eob,)y20r sin2 8 

It is straightforward to verify that the total inertial surface charge 
r 

is equal and opposite to the total inertial volume charge (4.17) 

(6.10) 

(6.11) 

Furthermore we note that Qsurf and QVo1 separately approach zero as w tends to zero. 
Since for y - 1, p, = b0a3/2 and Pj = 0 (for j # l ) ,  we have 

(6.12) 



Relativistic unipolar induction 3475 

and hence 

K ~ I ~ = , =  - ( ~ E O b O - m , )  sin Be2 (6.13) 

Then K ,  I w  =, = 0 with the choice 

b 0 - 2  - 3 F O m O *  (6.14) 

Thus (6.14) completes the specification of our solution in terms of a, w and m,. 

7. Conclusions 

We have presented the stationary electromagnetic field of a magnetised conducting 
sphere executing a rigid rotation. The inertial components of the exterior field have 
been given as a multipole series whilst the interior field can be specified simply in 
terms of a magnetisation strength and an arbitrary angular speed. The fields tend to 
the known [ 9 ]  static magnetic fields of a non-rotating magnetised sphere and have the 
expected behaviour found by other authors in the limit of non-relativistic rotational 
speeds. 

As emphasised in the introduction our approach has not relied on the use of any 
infinitesimal inertial Lorentz transformation [ 9 ]  to generate the fields. Rather we have 
been led naturally to a simple magnetisation 2-form l7 appropriate for the problem. 
Different choices of self-consistent magnetisations and induced interior currents (with 
the same static limits) may be contemplated. We consider the system described in this 
paper to be among the simplest. Others have been studied but with a considerable 
increase in complexity. Such complexity is commensurate with that produced by 
relaxing our axial symmetry condition and calculating the radiation produced when 
the axes of rotation and magnetisation no longer coincide. These effects may be found 
in [ 101. Aside from the generation of higher-multipole exterior fields perhaps the most 
notable property of the above solution is the concentration of inertial (free) volume 
charge density in the equatorial plane ( 8  = r / 2 )  of the sphere as w increases. This 
may be compared with the constant charge density for the interior of a slowly rotating 
sphere. There is a corresponding redistribution of surface charge in the relativistic 
case along with the appearance of surace 3-current. Such relativistic effects might 
have interesting implications for the behaviour of a magnetised rotating core with a 
(corotating) magnetosphere. 
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